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SUMMARY

Prions cause transmissible and genetic neurodegenerative diseases. Infectious prion particles are
composed largely, if not entirely, of an abnormal isoform of the prion protein (PrP5), which is encoded
by a chromosomal gene. Although the PrP gene is single copy, transgenic mice with both alleles of the
PrP gene ablated develop normally. A post-translational process, as yet unidentified, converts the
cellular prion protein (PrP®) into PrP5. Scrapie incubation times, neuropathology and prion synthesis
in transgenic mice are controlled by the PrP gene. Mutations in the PrP gene are genetically linked to
development of neurodegeneration. Transgenic mice expressing mutant PrP spontaneously develop
neurological dysfunction and spongiform neuropathology. Investigations of prion diseases using
transgenesis promise to yield much new information about these once enigmatic disorders.

1. INTRODUCTION

The prion diseases are a group of neurodegenerative
disorders of animals and humans. These diseases are
transmissible under some circumstances to experi-
mental animals by inoculation. Unlike other trans-
missible disorders, the prion diseases can also be
caused by mutations in the prion protein, PrP, which
is encoded by a chromosomal gene. Four diseases of
animals and four of humans are caused by prions
(table 1). Scrapie of sheep and goats is the prototypic
prion disease. Mink encephalopathy, chronic wasting
disease and bovine spongiform encephalopathy (BSE)
are all thought to occur after the consumption of
prion-infected foodstuffs. Similarly, kuru of the New
Guinea Fore people is thought to have resulted from
the consumption of brains from dying relatives during
ritualistic cannibalism (Alpers 1979; Gajdusek 1977).
Creutzfeldt—Jakob disease (GJD) occurs primarily as a
sporadic disorder (Masters et al. 198154) but iatrogenic
CJD is thought to result from the accidental inocula-
tion of patients with prions (Fradkin et al. 1991; Gibbs
el al. 1985). Familial CJD, Gerstmann-Striussler—
Scheinker syndrome (GSS) and fatal familial insom-
nia are all dominantly inherited prion diseases which
have been shown to be caused by mutations in the PrP
gene (Brown et al. 1991; Collinge et al. 1989; Hsiao &
Prusiner 1990; Medori et al. 19926).

For more than a century, scrapie was considered an
cnigmatic disorder of sheep and goats, the etiology of
which was unknown (M’Gowan 1914; Parry 1983).
By 1938, experimental transfer of scrapie from one
sheep to another began to suggest an infectious
etiology (Cuillé & Chelle 1939). Meanwhile, observa-
tions that the genetic backgrounds of flocks pro-

foundly influence their susceptibility to scrapie raised
the possibility that scapie might be an inherited
disorder (Gordon 1966). These opposing views
sparked many controversial encounters (Dickinson et
al. 1965; Parry 1962) and foreshadowed a series of
equally bitter arguments about the possible structure
of the transmissible scrapie agent (Pattison 1988).

Over the past decade, a growing body of experi-
mental data has begun to provide a coherent yet
unprecedented picture of the novel infectious patho-
gens or prions causing scrapie (Prusiner 1982, 1991).
Whereas inherited, transmissible and sporadic prion
diseases of humans are now well documented, the
situation with natural prion diseases of animals is less
clear. Progress in understanding the human prion
diseases has its roots in their transmission to animals
(Masters et al. 1979, 1981a) and the discovery of the
prion protein (PrP) (Bolton e al. 1982; Prusiner 1982)
followed by the molecular cloning of the PrP gene
(Chesebro et al., 1985; Oesch et al., 1985; Prusiner et al.
1984).

As molecular, biological and genetic analyses of
both the human and animal prion diseases have
advanced, the biochemistry of the prion protein has
continued to pose both methodological and concep-
tual problems. For example, transmissible prions are
composed largely, if not entirely, of an abnormal
isoform of cellular PrP designated PrP% (Gabizon &
Prusiner 1990; Prusiner 1991). Although PrP% is
synthesized from cellular PrP (PrP¢) by a post-
translational process (Basler ¢t al. 1986; Borchelt et al.
1990, 1992; Caughey & Raymond 1991), the precise
nature of this protein transformation remains
unknown. Whether the conversion of PrP¢ to PrP
involves an as yet unidentified chemical modification,
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Table 1. Prion diseases*

disease natural host
scrapie sheep and goats
transmissible mink encephalopathy

(TME) mink

chronic wasting disease (CWD) mule deer and elk

bovine spongiform encephalopathy

(BSE) cattle
kuru humans - fore?
Creutzfeldt-Jakob disease (GJD) humans
Gerstmann—Straussler—Scheinker

syndrome (GSS) humans
fatal familial insomnia (FFI) humans

I Alternative terminologics include slow virus infections,

subacute transmissible spongiform encephalopathies, and
unconventional slow virus diseases (Gajdusek 1977).

2 Kuru is confined to the Fore tribe and surrounding tribes
in the highlands of Papua New Guinea.

perhaps labile under the conditions of analysis, or
whether it only involves a conformational change
(Stahl et al. 1992b) remains to be established.

To date, it has not been possible to synthesize PrP5
in cell-free systems (Raeber et al. 1992), but studies of
this insoluble protein in cultured cells have yielded
information about the subcellular site of its synthesis
and deposition (Borchelt et al. 1992; McKinley et al.
19915). In the brains of animals and humans dying of
prion diseases, PrP* is found in the neuropil (Tara-
boulos et al. 1992a) and sometimes in the extracellular
space as discrete accumulations called plaques (De-
Armond et al. 1985; Kitamoto et al. 1986). These PrP
plaques were first described as amyloid deposits
because they exhibited a green-gold birefringence
after staining with Congo red dye when viewed by
polarization microscopy (Kiatzo et al. 1959). When
present, PrP amyloid plaques are diagnostic of prion
diseases. Rod-shaped polymers of PrP with the pro-
perties of amyloid can be generated by limited
protease digestion of PrP" in the presence of detergent
(McKinley et al. 1991a; Prusiner et al. 1983).

The function of PrP® is unknown but PrP® mole-
cules appear to be unnecessary because mice homolo-
gous for disruption of the PrP gene develop normally
and are healthy for more than 9 months (Biieler et al.
1992). These results argue that scrapie and the other
prion diseases do not result from an inhibition of PrP®
function caused by PrP%, but rather the accumulation
of PrP% interferes with some as yet undefined cellular
process.

2. THE PRION PROTEIN

Once it was established that scrapie prion infectivity
depended upon protein (Prusiner e al. 1981), the
search for a scrapie-specific protein intensified.
Although the insolubility of scrapie infectivity made
purification problematic, we took advantage of this
property, along with its relative resistance to degrada-
tion by proteases, to extend the degree of purification.
Radio-iodination of partly purified fractions revealed
a protein unique to preparations from scrapie-infected
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brains (Bolton et al. 1982; Prusiner et al. 1982). This
protein was later named prion protein (PrP) with an
apparent molecular mass of 27-30 kDa, or PrP 27-30
(McKinley et al. 1983a).

Subsequent studies showed that PrP 27-30 is de-
rived from a larger protein of molecular mass 33-35
kDa, designated PrP% (Meyer et al. 1986; Oesch el al.
1985). At the same time it was found that the brains of
normal and scrapie-infected hamsters express similar
levels of PrP mRNA and a protease-sensitive prion
protein, designated PrP® (Oesch et al. 1985). The
function of PrP® is unknown, although it has been
suggested that a PrP-like molecule from chickens may
have acetylcholine receptor-inducing activity (Harris
et al. 1991). Furthermore, PrP¢ does not seem to be
essential, at least in young mice, as disruption of the
PrP gene has not caused any detectable abnormalities
in the nervous, musculoskeletal or lymphoreticular
systems at 9 months of age (Bueler e al. 1992).
Perhaps the absence of PrP® will result in abnormali-
ties later in life, as is the case for the p53 tumor
suppressor protein where young animals lacking p53
are normal but as they age neoplasms develop (Done-
hower et al. 1992).

3. STRUCTURE, ORGANIZATION AND
EXPRESSION OF THE PrP GENE

The entire open rcading frame (orr) of all known
mammalian and avian PrP genes is contained within a
single exon (figure 1) (Basler e al. 1986; Gabriel et al.
1992; Hsiao et al. 1989a; Puckett e/ al. 1991; Westaway
et al. 1989, 1991). This feature of the PrP gene

eliminates the possibility that PrP% arises from

Cellular and Scrapie Prion Protein Isoforms

Intron

PrP messenger RNA <
R 2 R Ll Rt M

Translation

e ———y-
Post-Translational
Conformational Change

Figure 1. Structure and organization of the chromosomal
prion protein gene. In all mammals examined, the entire
open reading frame (ORF) is contained within a single cxon.
The 5 untranslated region of the PrP mRNA is derived
from either one or two additional exons (Basler e al. 1986;
Puckett et al. 1991; Westaway et al. submitted. Only one PrP
mRNA has been detected. PrP% is thought to be derived
from PrP¢ by a post-translational process (Basler ¢t al. 1986;
Borchelt et al. 1990, 1992; Caughey & Raymond 1991;
Taraboulos et al. 19924). The amino acid sequence of PrP%
is identical to that predicted from the translated sequence of
the DNA encoding the PrP gene (Basler ef al. 1986; Stahl et
al. 19926) and no unique post-translational chemical modifi-
cations have been identified that might distinguish PrP%
from PrPC¢ Thus, it seems likely that PrP® undergoes a
conformational change as it is converted to PrP%.
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alternative RNA splicing (Basler et al. 1986; Westa-
way et al. 1987, 1991); however, mechanisms such as
RNA editing or protein splicing remain a possibility
(Blum et al. 1990; Kane et al. 1990). The two exons of
the Syrian hamster (SHa) PrP gene are separated by a
10 kilobase (kb) intron: exon | encodes a portion of
the 5" untranslated leader sequence, whereas exon 2
encodes the orF and 3’ untranslated region (Basler et
al. 1986). The mouse (Mo) PrP gene is comprised of
three exons, with exon 3 analogous to exon 2 of the
hamster (Westaway et al. 1991). The promoters of
both the SHa and MoPrP genes contain copies of G-C
rich repeats 3 and 2, respectively, but are devoid of
TATA boxes. These G-C nonamers represent a motif
which may function as a canonical binding site for the
transcription factor Spl (McKnight & Tjian 1986).

Although PrP mRNA is constitutively expressed in
the brains of adult animals (Chesebro et al. 1985;
Oesch et al. 1985), it is highly regulated during
development. In the septum, levels of PrP mRNA and
choline acetyltransferase were found to increase in
parallel during development (Mobley et al. 1988). In
other brain regions, PrP gene expression occurred at
an earlier age. In situ hybridization studies show that
the highest levels of PrP mRNA are found in neurons
(Kretzschmar et al. 1986a).

PrP¢ expression in brain was defined by standard
immunohistochemistry (DeArmond et al. 1987) and
by histoblotting (Taraboulos ¢t al. 19924) (figure 2).
Immunostaining of PrP® in the SHa brain was most

Figure 2. Histoblots of Syrian hamster brain immunostained
for PrP¢ or PrP%. Coronal sections through the hippocam-
pus-thalamus (a,c,e) and the septum-caudate (5,4, /). Brain
sections of a Syrian hamster (¢,d) clinically ill after inocula-
tion with Sc237 prions and (e,f) an uninfected, control
animal. Immunostaining for (c,d) PrP% and (e, /) PrPC Ac,
nucleus accumbens; Am, amygdala; Cd, caudate nucleus;
Db, diagonal band of Broca; H, habenula; Hp, hippocam-
pus; Hy, hypothalmus; IC, internal capsule; NC, neocortex;
Th, thalamus; Pir, piriform cortex; Pt, putamen; S, septal
nuclei. Reproduced from Taraboulos et al. (Proc. natn. Acad.
Sci. U.S.4., 1992a).
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intense in the stratum radiatum and stratum oriens of
the CAI region of the hippocampus and was virtually
absent from the granule cell layer of the dentate gyrus
and the pyramidal cell layer throughout Ammon’s
horn. PrP% staining was minimal in these regions
which were intensely stained for PrP® A similar
relation between PrP¢ and PrP% was found in the
amygdala. In contrast, PrP% accumulated in the
medial habenular nucleus, the medial septal nuclei
and the diagonal band of Broca; these areas were
virtually devoid of PrP®. In the white matter, bundles
of myelinated axons contained PrP% but were devoid
of PrP% These findings suggest that prions are
transported along axons in agreement with earlier
findings where scrapie infectivity was found to migrate
in a pattern consistent with retrograde transport
(Fraser & Dickinson 1985; Jendroska et al. 1991;
Kimberlin ¢t al. 1983). Although the rate of PrP%
synthesis appears to be a function of the level of PrP®¢
expression in transgenic (Tg) mice, the level to which
PrP3¢ accumulates appears to be independent of PrPC¢
concentration (Prusiner ef al. 1990).

4. POST-TRANSLATIONAL SYNTHESIS OF
PrPse

Metabolic labelling studies of scrapie-infected cul-
tured cells have shown that PrP¢ is synthesized and
degraded rapidly whereas PrP% is synthesized slowly
by an as yet undefined post-translational process
(figure 1) (Borchelt et al. 1990, 1992; Caughey et al.
1989; Caughey & Raymond, 1991). These observa-
tions are consistent with earlier findings showing that
PrP% accumulates in the brains of scrapie-infected
animals while PrP mRNA levels remain unchanged
(Oesch et al. 1985). Furthermore, the structure and
organization of the PrP gene made it likely that PrPSc
is formed during a post-translational event (Basler e
al. 1986).

Both PrP isoforms appear to transit through the
Golgi apparatus where their Asn-linked oligosaccha-
rides are modified and sialylated (Bolton ef al. 1985;
Endo et al. 1989; Haraguchi et al. 1989; Manuelidis
el al. 1985; Rogers e/ al. 1990). PrP¢ is presumably
transported within secretory vesicles to the external
cell surface where it is anchored by a glycosyl
phosphatidylinositol (GPI) moiety (Baldwin et al.
1990; Safar et al. 1990; Stahl et al. 1987, 1990a,b). In
contrast, PrP% accumulates primarily within cells
where it is deposited in cytoplasmic vesicles, many of
which appear to be secondary lysosomes (Borchelt e
al. 1992; Butler e/ al. 1988; Caughey et al. 1991;
McKinley e/ al. 1991b; Taraboulos el al. 1992b;
Taraboulos et al. 1990b).

Whether PrP¢ is the substrate for PrPS formation
or whether a restricted subset of PrP molecules are
precursors for PrP5 remains to be established. Several
experimental results suggest that PrP molecules des-
tined to become PrP%¢ exit to the cell surface, as does
PrP¢ (Stahl et al. 1987), before their conversion into
PrP% (Borchelt et al. 1992; Caughey & Raymond
1991; Taraboulos et al. 19925). Interestingly, the GPI
anchors of both PrP¢ and PrP%, which presumably
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feature in directing the subcellular trafficking of these
molecules, are sialylated (Stahl et al. 1992a). It is
unknown whether sialylation of the GPI anchor
participates in some aspect of PrP5 formation.

Although most of the difference in mass of PrP 27—
30 predicted from the amino acid sequence and that
observed after post-translational modification is due to
complex-type oligosaccharides, these sugar chains are
not required for the synthesis of protease-resistant PrP
in scrapie-infected cultured cells based on experiments
with the Asn-linked glycosylation inhibitor tunicamy-
cin and on site-directed mutagenesis studies (Tara-
boulos et al. 1990a). Whether unglycosylated PrP5 is
associated with scrapie prion infectivity remains to be
established, but experiments with transgenic mice
may resolve this issue.

Cell-free translation studies have demonstrated two
forms of PrP: a transmembrane form which spans the
bilayer twice at the transmembrane (TM) and amphi-
pathic helix (aH) domains, and a secretory form
(Bazan et al. 1987; Hay et al. 1987a,b; Lopez et al.
1990; Yost et al. 1990). The stop transfer effector (sTE)
domain controls the topogenesis of PrP. That PrP
contains both a T domain and a GPI anchor poses a
topological conundrum. It seems likely that mem-
brane-dependent events feature in the synthesis of
PrP%, especially as brefeldin A, which selectively
destroys the Golgi stacks (Doms et al. 1989; Lippin-
cott-Schwartz et al. 1989), prevents PrP% synthesis in
scrapie-infected cultured cells (Taraboulos et al.
199254). For many years, the association of scrapie
infectivity with membrane fractions has been appre-
ciated (Gibbons & Hunter 1967; Griffith 1967; Mill-
son et al. 1971); indeed, hydrophobic interactions are
thought to account for many of the physical properties
displayed by infectious prion particles (Gabizon et al.
1987; Prusiner et al. 1978, 1980).

5. PRION DISEASES OF SHEEP AND CATTLE

Even though scrapie was recognized as a distinct
disorder of sheep with respect to its clinical manifes-
tations as early as 1738, the disease remained enig-
matic even with respect to its pathology for more than
two centuries. Some veterinarians thought that scrapie
was a disease of muscle caused by parasites, whereas
others thought that it was a dystrophic process. An
investigation into the etiology of scrapie followed the
vaccination of sheep for looping ill virus with forma-
lin-treated extracts of ovine lymphoid tissue unknow-
ingly contaminated with scrapie prions (Gordon
1946). Two years later, more than 1500 sheep deve-
loped scrapie from this vaccine.

While the transmissibility of scrapie became well
established, the spread of scrapie within and among
flocks of sheep remained puzzling. Parry argued that
host genes were responsible for the development of
scrapie in sheep. He was convinced that natural
scrapie is a genetic disease which could be eradicated
by proper breeding protocols (Parry 1962; Parry
1983). He considered its transmission by inoculation
of importance primarily for laboratory studies and
communicable infection of little consequence in

Phil. Trans. R. Soc. Lond. B (1993)

Transgenelic investigations of prion diseases

nature. Scrapie is widely recognized as a naturally
transmissible disease of sheep and goats, and it has
been argued that host genetics only modulates suscep-
tibility to an endemic infectious agent (Dickinson et al.
1965).

Studies of PrP genes (Prn-p) in mice have revealed
that short or long incubation times occur before
scrapie. A genetic linkage has been demonstrated
between a Prn-p restriction fragment length polymor-
phism and a gene modulating incubation times (Prn-7)
(Carlson et al. 1986). Other investigators have con-
firmed the genetic linkage, and one group has shown
that the incubation time gene Sinc is also linked to PrP
(Carlson et al. 1988; Hunter et al. 1987; Race el al.
1990). The incubation time gene for experimental
scrapie in Cheviot sheep called Sip is said to be linked
to a PrP gene restriction fragment length polymor-
phism (Hunter et al. 1989), a situation perhaps
analogous to Prn-i and Sinc in mice. Sinc was first
described by Dickinson and colleagues over 20 years
ago (Dickinson et al. 1968); whether the genes for PrP,
Prn-i and Sinc are all congruent remains to be
established. The PrP sequences of NZW (Prn-p*) and
I/Ln (Prn-p®) mice with short and long scrapie
incubation times, respectively, differ at codons 108
(L-F) and 198 (T—-V) (Westaway et al. 1987).
Although these amino acid substitutions argue for the
congruency of Prn-p and Prn-i, experiments with Pra-p*
mice expressing Pra-p° transgenes demonstrated a
paradoxical shortening of incubation times (Westa-
way el al. 1991) instead of a prolongation as predicted
from (Pra-p* x Prn-p®) F1 mice which exhibit long
incubation times that are dominant (Carlson et al.
1986, 1988; Dickinson ¢t al. 1968; Hunter et al. 1987,
Race et al. 1990).

Since 1986 more than 70000 cattle have been killed
with BSE in Great Britain (Dealler & Lacey 1990;
Wilesmith & Wells 1991; Wilesmith et al. 1988,
19924,b). Neither the cause of BSE, often referred to as
‘mad cow disease’ nor methods of controlling the
spread of this disorder are known. Many investigators
contend that BSE resulted from the feeding of dietary
protein supplements derived from rendered scrapie-
infected sheep offal to cattle, a practice banned since
1988. Curiously, the majority of BSE cases have
occurred in herds with a single affected animal within
a herd; several cases of BSE in a single herd are
infrequent (Dealler & Lacey 1990; Wilesmith & Wells
1991; Wilesmith ef al. 1988). Whether the distribution
of BSE cases within herds will change as the epidemic
progresses and BSE will disappear with the cessation
of feeding rendered meat and bone meal are uncertain.

6. HUMAN PRION DISEASES

The discovery of human prion diseases came from the
recognition that the neuropathology of the cerebellar
disorder kuru, which is confined to natives in the Fore
region of New Guinea (Gajdusek 1977; Gajdusek et al.
1966), was similar to that of scrapie. Once the most
common cause of death among women and children,
kuru has almost disappeared with the cessation of
ritualistic cannibalism (Alpers 1987). These findings
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suggest that kuru was transmitted orally. Of note are
recent cases of kuru which have occurred in people
exposed to prions more than three decades ago
(Prusiner et al. 1982). Spongiform degeneration in
kuru prompted Hadlow (1959) to suggest that
transmission studies in apes be done. The success of
those studies (Gajdusek et al. 1966) was followed by
the transmission of CJD to apes (Gibbs et al. 1968)
based on the earlier recognition that the neuropatho-
logical changes in kuru were similar to those found
in GJD (Klatzo et al. 1959). In 1920, Creutzfeldt
reported the case of a 23-year-old women who died
of a neurodegenerative disease, and the following
year Jakob reported five cases (Jakob 1921a,b,c).
Ironically, some investigators doubt that Creutzfeldt
described the disease that now bears his name
(Richardson 1977).

In humans, a genetic basis of the condition was first
thought to have a role in CJD with the recognition
that ~109, of cases are familial (Gajdusek 1977;
Masters et al. 19816). Like sheep scrapie, the relative
contributions of genetic and infectious etiologies in the
human prion diseases remained puzzling. The dis-
covery of the PrP gene raised the possibility that
mutation might feature in the hereditary human prion
diseases. A point mutation at codon 102 (P—-L) was
shown to be linked genetically to development of
Gerstmann-Straussler-Scheinker disease (GSS) with a
LoD score exceeding 3 (figure 3) (Hsiao e/ al. 1989a).
This mutation may be caused by the deamination of a
methylated CpG in a germline PrP gene resulting in
the substitution of a T for C. The codon 102 mutation
has been found in ten different families in nine
different countries including the original GSS family
(Doh-ura et al. 1989; Goldgaber et al. 1989; Kretzsch-
mar et al. 1991a,b).

An insert of 144 base pairs (b.p.) at codon 53
containing six octarepeats has been described in
patients with CJD from four families, all residing in
southern England (Collinge et al. 1989, 1990; Crow et
al. 1990; Owen et al. 1989, 1990, 1991). This mutation
must have arisen through a complex series of events
because the human PrP gene contains only five
octarepeats, suggesting that a single recombination
event could not have created the insert. Genealogic
investigations have shown that all four families are
related, suggesting a single founder born more than
two centuries ago (Crow ef al. 1990). The LoD score
for this extended pedigree exceeds 11. Studies from
several laboratories have demonstrated that four, five,
six, seven, eight or nine octarepeats in addition to the
normal five are found in individuals with inherited
CJD, whereas deletion of one octarepeat has been
identified without the neurologic disease (Collinge et
al. 1989, 1990; Goldfarb et al. 1991a; Laplanche et al.
1990; Owen ¢t al. 1989, 1990, 1992; Vnencak-Jones &
Phillips 1992).

For many years, the unusually high incidence of
CJD among Israeli Jews of Libyan origin was thought
to be caused by the consumption of lightly cooked
sheep brain or.eyeballs (Alter & Kahana 1976;
Herzberg et al. 1974; Kahana ¢t al. 1974; Neugut et al.
1979). Recent studies have shown that some Libyan
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Mutations in PrP gene alleles linked to or associated
with the inherited human prion diseases

198 217
178 200

81 117
102 129

Human PRNP

3248 64
40 56 72

Octarepeat Sequence
P(Q/H)GGG(G/-)WGQ

Figure 3. Human prion protein gene. The open reading
frame (ORF) is denoted by the large grey rectangles and the
exon by the smaller rectangles. Codon numbers are indi-
cated above the amino acid sequence. Human PrP wild-type
polymorphisms are shown in the upper rectangle denoted ‘a’
whereas mutations linked to or associated with prion diseases
are depicted in the lower rectangle denoted ‘A’. The wild-type
human PrP gene contains five octarepeats [P(Q/H)GGG(G/
—)WGQ] from codons 51 to 91 (Kretzschmar et al. 19864).
Deletion of a single octarepeat at codon 81 or 82 is not
associated with prion disease (Laplanche et al. 1990; Puckett
et al. 1991; Vnencak-Jones & Phillips 1992). Whether such a
deletion alters the phenotypic characteristics of a prion
disease is unknown, but homozygosity for Met or Val at
codon 129 appears to increase susceptibility to sporadic GJD
(Palmer et al. 1991). Octarepeat inserts of 32, 40, 48, 56,
64, and 72 amino acids at codons 67, 75 or 83 have been
found and are either genetically linked to or associated
with familial CJD (Collinge et al. 1989, 1990; Crow et al.
1990; Goldfarb et al. 1990¢, 1991a; Owen et al. 1989, 1990;
J. Collinge & M. S. Palmer, unpublished data). Point
mutations at codons 102 (Pro—Leu), 117 (Ala—>Val), and
198 (Phe—Ser) are found in patients with GSS (Doh-ura
et al. 1989; Goldfarb et al. 1990a,c,d; Goldgaber et al. 1989;
Hsiao et al. 1989a,b, 1991b; Hsiao & Prusiner 1990; Tateishi
et al. 1990). There are common polymorphisms at codons
117 (Ala—Ala) and 129 (Met—Val). Point mutations at
codons 178 (Asp—Asn) and 200 (Glu—Lys) are found in
patients with familial GJD (Gabizon et al. 1991; Goldfarb
et al. 19906, 1991¢; Hsiao et al. 1991a). Point mutations at
codons 198 (Phe—Ser) and 217 (Gln—Arg) are found in
patients with GSS who have PrP amyloid plaques and
neurofibrillary tangles (Dlouhy et al. 1992; Hsiao et al.
1992). Single letter code for amino acids is as follows: A, Ala;
D, Asp; E, Glu; F, Phe; K, Lys; L, Leu; M, Met; N, Asn; P,
Pro; Q, Gln; R, Arg; S, Ser; T, Thr; and V, Val.

and Tunisian Jews in families with CJD have a PrP
gene point mutation at codon 200 resulting in a E-K
substitution (Gabizon et al. 1991; Goldfarb et al. 1990;
Hsiao et al. 1991a). One patient was homozygous for
the mutation, but her clinical presentation was similar
to that of heterozygotes (Hsiao et al. 1991a), suggest-
ing that familial prion diseases are true autosomal
dominant disorders like Huntington’s disease (Wexler
et al. 1987). The codon 200 mutation has also been
found in Slovaks originating from Orava in North
Central Czechoslovakia (Goldfarb et al. 1990), in a
cluster of familial cases in Chile (Goldfarb ef al. 19915)
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and in a large German family living in the United
States (Bertoni et al. 1992). Some investigators have
argued that the codon 200 mutation originated in a
Sephardic Jew whose descendants migrated from
Spain and Portugal at the time of the inquisition
(Goldfarb et al. 19915). It is more likely that the codon
200 mutation has arisen independently multiple times
by the deamidation of a methylation CpG as de-
scribed above the codon 102 mutation (Hsiao et al.
1989a¢, 1991a). In support of this hypothesis are
historical records of Libyan and Tunisian Jews show-
ing that they are descended from Jews living on the
island of Jerba where Jews first settled around 500 Bc
and not from Sephardim (Udovitch & Valensi 1984).

Many families with CJD have been found to have
point mutations at codon 178 (Brown et al. 1992; Fink
el al. 1991; Goldfarb et al. 1991¢, 1992; Haltia et al.
1991). In these patients, as well as those with the
codon 200 mutation, PrP amyloid plaques are rare;
the neuropathological changes generally consist of
widespread spongiform degeneration. Recently, a new
prion disease which presents with insomnia has been
described in three Italian families with the codon 178
mutation (Medori ¢t al. 1992a4,b). The neuropathology
in these patients with fatal familial insomnia is
restricted to selected nuclei of the thalamus. It is
unclear whether all patients with the codon 178
mutation or only a subset present with sleep distur-
bances. The discovery that fatal familial insomnia is
an inherited prion disease clearly widens the clinical
spectrum of these disorders and raises the possibility
that many other degenerative diseases of unknown
etiology may be caused by prions (Johnson 1992;
Medori et al. 19925).

Other point mutations at codons 117, 198 and 217
also segregate with inherited prion diseases (Doh-ura
el al. 1989; Hsiao et al. 19915, 1992). Patients with a
dementing or telencephalic form of GSS have a
mutation at codon 117. These patients, as well as some
in other families, were once thought to have familial
Alzheimer’s disease, but are now known to have prion
diseases on the basis of PrP immunostaining of
amyloid plaques and PrP gene mutations (Farlow et
al. 1989; Ghetti ef al. 1989; Giaccone et al. 1990;
Nochlin e/ al. 1989). Patients with the codon 198
mutation have numerous neurofibrillary tangles that
stain with antibodies to 7. They have amyloid plaques
(Farlow el al. 1989; Ghetti ¢t al. 1989; Giaccone el al.
1990; Nochlin et al. 1989) that are composed largely of
a PrP fragment extending from residues 58 to 150
(Tagliavini et al. 1991). A genetic linkage study of this
family produced a LoD score exceeding 6 (Dlouhy e/ al.
1992). The neuropathology of two patients of Swedish
ancestry with the codon 217 mutation (Ikeda el al.
1991) was similar to that of patients with the codon
198 mutation.

At PrP codon 129, an amino acid (Met-Val)
polymorphism (figure 3) has been identified (Owen
et al. 1990). Patients with CJD after treatment with
human pituitary growth hormone (Buchanan et al.
1991; IFradkin et al. 1991) or gonadotrophin have a
significant preponderance of the Val allele (Collinge
et al. 1991) compared with the general population.
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Sporadic CJD patients were found to be homozygous
for the Met or Val allele at codon 129 but were rarely
heterozygous (Palmer et al. 1991). The finding was
interpreted (Hardy 1991; Palmer et al. 1991) as being
consistent with the hypothesis for the existence of
PrP¢/PrP5¢ heterodimers and that these forms feature
in the replication of prions (Prusiner 1991; Prusiner e!
al. 1990; see § 10).

7. SPONTANEOUS NEURODEGENERATION
IN TRANSGENIC MICE: ATTEMPTS TO
DEMONSTRATE DE NOVO SYNTHESIS OF
PRIONS

Transgenic modifications have been used to investi-
gate the control of onset of infections, prion synthesis
and neuropathology. When the codon 102 point
mutation was introduced into MoPrP in transgenic
(Tg) mice, spontaneous central nervous system (CNs)
degeneration occurred, characterized by clinical signs
indistinguishable from experimental murine scrapie
and neuropathology consisting of widespread spongi-
form morphology and astrocytic gliosis (Hsiao et al.
1990). By inference, these results suggest that PrP
mutations cause GSS and familial CJD. It is unclear
whether low levels of protease-resistant PrP in the
brains of Tg mice with the GSS mutation is PrP%or
residual PrP°. Undetectable or low levels of PrP* in
the brains of these Tg mice are consistent with the
results of transmission experiments that suggest low
titres of infectious prions. Brain extracts transmit cNs
degeneration to inoculated recipients, and the de novo
synthesis of prions has been demonstrated by serial
passage from one Tg (GSSMoPrP) mouse that deve-
loped spontaneous neurodegeneration (Hsiao el al.
1991¢). If these observations can be supported by
additional studies with similar results and the possi-
bility of contamination eliminated, then it can be
argued that prions are devoid of foreign nucleic acid,
in accord with many studies that use other experi-
mental approaches (Bellinger-Kawahara e al.
1987a,b; Diedrich et al. 1987; Diener et al. 1982
Duguid et al. 1988; Gabizon et al. 1988; Kellings ¢t al.
1992; McKinley et al. 1983b; Meyer el al. 1991; Neary
el al. 1991; Oesch el al. 1988).

One view of the PrP gene mutations has been that
they render individuals susceptible to a common
‘virus’ (Aiken & Marsh 1990; Chesebro et al. 1985;
Kimberlin 1990). In this scenario, the putative scrapie
virus is thought to persist within a worldwide reservoir
of humans, animals or insects without causing detect-
able illness. Yet 1 in 10° individuals develop sporadic
CJD and die from a lethal ‘infection’” while ~ 1009, of
people with PrP point mutations or inserts appear
eventually to develop neurologic dysfunction. That
germline mutations found in the PrP genes of patients
and at-risk individuals are the cause of familial prion
diseases is supported by experiments with Tg(GSS
MoPrP) mice described above (Hsiao & Prusiner
1990; Hsiao et al. 1991¢; Weissmann 19916). The Tg
mouse studies also argue that sporadic GJD might
arise from the spontaneous conversion of PrP¢ to
PrPYP due to either a somatic mutation of the PrP
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gene or a rare event involving modification of wild-
type PrPC (Prusiner 1991).

8. SPECIES BARRIERS IN THE
TRANSMISSION OF PRION DISEASES

Passage of prions between species is a stochastic
process characterized by prolonged incubation times
(Pattison 1965, 1966; Pattison & Jones 1967). Prions
synthesized de novo reflect the sequence of the host PrP
gene and not that of the PrP% molecules in the
inoculum (Bockman e/ al. 1987). On subsequent
passage in a homologous host, the incubation time
shortens to that recorded for all subsequent passages
and it becomes a non-stochastic process. The species
barrier concept is of practical importance in assessing
the risk for humans of developing CJD after consump-
tion of scrapie-infected lamb or BSE beef.

To test the hypothesis that differences in PrP gene
sequences might be responsible for the species barrier,
Tg mice expressing SHaPrP were constructed (Pru-
siner ef al. 1990; Scott et al. 1989). The PrP genes of
Syrian hamsters and mice encode proteins differing
at 16 positions. Incubation times in four lines of
Tg(SHaPrP) mice inoculated with Mo prions were
prolonged compared with those observed for non-Tg,
control mice (figure 4a). Inoculation of Tg(SHaPrP)
mice with SHa prions demonstrated abrogation of the
species barrier resulting in abbreviated incubation
times due to a non-stochastic process (figure 4b)
(Prusiner et al. 1990; Scott et al. 1989). The length of
the incubation time after inoculation with SHa prions
was inversely proportional to the level of SHaPrP® in
the brains of Tg(SHaPrP) mice (figure 44,c) (Prusiner
et al. 1990). SHaPrP% levels in the brains of clinically
ill mice were similar in all four Tg(SHaPrP) lines
inoculated with SHa prions (figure 4d). Bioassays of
brain extracts from clinically ill Tg(SHaPrP) mice
inoculated with Mo prions revealed that only Mo
prions but no SHa prions were produced (figure 4e).
Conversely, inoculation of Tg(SHaPrP) mice with
SHa prions led to only the synthesis of SHa prions
(figure 4f). Thus, the de novo synthesis of prions is
species specific and reflects the genetic origin of the
inoculated prions. Similarly, the neuropathology of
Tg(SHaPrP) mice is determined by the genetic origin
of prion inoculum. Mo prions injected into
Tg(SHaPrP) mice produced a neuropathology
characteristic of mice with scrapie. A moderate degree
of vacuolation in both the grey and white matter was
found but amyloid plaques were rarely detected
(figure 4g). Inoculation of Tg(SHaPrP) mice with
SHa prions produced intense vacuolation of the grey
matter, sparing of the white matter, and numerous
SHaPrP amyloid plaques characteristic of Syrian
hamsters with scrapie (figure 44).

9. PRION DIVERSITY

There is good evidence for multiple ‘strains’ or distinct
isolates of prions as defined by specific incubation
times, distribution of vacuolar lesions, and patterns of
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PrP% accumulation (Bruce et al. 1989; Dickinson et al.
1968; Fraser & Dickinson, 1973; Hecker et al. 1992).
The mechanism by which isolate-specific information
is carried by prions remains enigmatic; indeed,
explaining the molecular basis of prion diversity seems
to be a formidable challenge. For many years, some
investigators argued that scrapie is caused by a virus-
like particle which contains a scrapie-specific nucleic
acid that encodes the information expressed by each
isolate (Bruce & Dickinson 1987). To date, no such
polynucleotide has been identified by a wide variety of
techniques including measurements of the nucleic
acids in purified preparations. An alternative hypo-
thesis has been suggested, where PrP% alone is capable
of transmitting disease but the characteristics of PrP
might be modified by a cellular RNA (Weissman
1991a). This accessory cellular RNA is postulated to
induce its own synthesis upon transmission from one
host to another.

Two additional hypotheses not involving a nucleic
acid have been offered to explain distinct prion
1isolates: a non-nucleic acid second component might
create prion diversity, or post-translational modifica-
tion of PrP% might be responsible for the different
properties of distinct prion isolates (Prusiner 1991).
Whether the PrP% modification is chemical or confor-
mational alone remains to be established, but no
candidate chemical modifications have been identi-
fied. Structural studies of the GPI anchors of two SHa
isolates have failed to reveal any differences; interest-
ingly, about 409, of the anchor glycans have sialic
acid residues (Stal ¢/ al. 19924). A portion of the PrP®
GPI anchors also has sialic acid residues; PrP is the
first protein found to have sialic acid residues attached
to GPI anchors.

Although the structures of Asn-linked carbo-
hydrates have been analysed for PrP5 of one isolate
(Endo et al. 1989), no data are available for PrP% of
other isolates or PrPY The great diversity of Asn-
linked carbohydrates makes them candidates for iso-
late-specific information but there is no precedent for
Asn-linked carbohydrates instructing the synthesis of
more of the same compounds. In recent studies, we
found that distinct isolates produce different, repro-
ducible patterns of PrP% accumulation (Hecker et al.
1992). These findings have given rise to the hypothesis
that PrP% synthesis occurs in particular sets of cells for
a given distinct prion isolate. Whether different Asn-
linked carbohydrates function to target PrP% of a
distinct isolate to a particular set of cells where the
same Asn-linked carbohydrates will be coupled to
PrPC before its conversion to PrP% remains to be
established. Even though this hypothesis is attractive,
it must be noted that PrP% synthesis in scrapie-
infected cells occurs in the presence of tunicamycin,
which inhibits Asn-linked glycosylation, and with PrP
molecules mutated at the Asn-linked glycosylation
concensus sites (Taraboulos et al. 1990a). Whether
SHa scrapie prions can be synthesized in Tg mice
expressing SHaPrP with mutated Asn-linked glycosy-
lation concensus sites and the properties exhibited by
distinct isolates is currently under investigation. Of
note, two different isolates from mink dying of trans-
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Figure 4. Transgenic mice expressing Syrian hamster (SHa) prion protein exhibit species-specific scrapie incubation
times, infectious prion synthesis and neuropathology (Prusiner e/ al. 1990). (a) Scrapie incubation times in non-
transgenic mice (Non-Tg) and four lines of transgenic mice expressing SHaPrP and Syrian hamsters inoculated
intracercbrally with ~10° D5y units of Chandler Mo prions serially passaged in Swiss mice. The four lines of
transgenic mice have different numbers of transgene copies: Tg69 and Tg71 mice have two to four copies of the
SHaPrP transgene, whereas Tg81 have 30 to 50 copies and Tg7 mice have > 60. Incubation times are number of
days from inoculation to onset of ncurologic dysfunction. (4) Scrapie incubation times in mice and hamsters
inoculated with ~ 107 15y units of Sc237 prions serially passaged in Syrian hamsters and as described in (a). (¢)
Brain SHaPrP® in transgenic mice and hamsters. SHaPrP¢ levels were quantitated by an enzyme-linked
immunoassay. (d) Brain SHaPrP% in transgenic mice and hamsters. Animals were killed after exhibiting clinical
signs of scrapie. SHaPrP5¢ levels were determined by immunoassay. (¢) Prion titres in brains of clinically ill animals
after inoculation with Mo prions. Brain extracts from Non-Tg, Tg71, and Tg81 mice were bioassayed for prions in
mice (left) and hamsters (right). (d) Prion titres in brains of clinically ill animals after inoculation with SHa prions.
Brain extracts from Syrian hamsters as well as Tg71 and Tg81 mice were bioassayed for prions in mice (left) and
hamsters (right). (g) Neuropathology in Non-Tg mice and Tg(SHaPrP) mice with clinical signs of scrapie after
inoculation with Mo prions. Vacuolation in grey (left) and white (centre) matter; PrP amyloid plaques (right).
Vacuolation score: 0=none, 1 =rare, 2=modest, 3 =moderate, 4 =intense. (4) Neuropathology in Syrian hamsters
and transgenic mice inoculated with SHa prions. Degree of vacuolation and frequency of PrP amyloid plaques as
described in (g). Adapted from Prusiner (Science, Wash. 252, 1515-1522, 1991).
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missible mink encephalopathy exhibit different sensiti-
vities of PrP% to proteolytic digestion, supporting the
suggestion that isolate-specific information might be
carried by PrP% (Bessen & Marsh 1992a,6; Marsh et
al. 1991).

10. PRION REPLICATION

Many experimental studies argue persuasively that
prions are devoid of nucleic acid, yet the complete
structure of the prion particle, as well as the mecha-
nism by which prions multiply, remains to be estab-
lished. Although the search for a scrapie-specific
nucleic acid continues to be unrewarding, some
investigators steadfastly cling to the notion that this
putative polynucleotide drives prion replication. If
prions are found to contain a scrapie-specific nucleic
acid, then such a molecule would be expected to direct
scrapie agent replication using a strategy similar to
that used by viruses. In the absence of any chemical or
physical evidence for a scrapie-specific polynucleotide
(Aiken et al. 1990; Akowitz et al. 1990; Bellinger-
Kawahara et al. 1987a,b; Diedrich et al. 1987; Diener
el al. 1982; Duguid et al. 1988; Gabizon et al. 1988,
Kellings ¢t al. 1992; McKinley et al. 1983b; Meyer el al.
1991; Murdoch et al. 1990; Neary et al. 1991; Oesch
et al. 1988), it seems reasonable to consider some
alternative mechanisms that might feature in prion
biosynthesis. The multiplication of prion infectivity is
an exponential process in which the post-translational
conversion of PrP¢ or a precursor to PrP5 appears to
be obligatory (Borchelt et al. 1990, 1992; Caughey &
Raymond 1991).

Let us consider the remote possibility that prions do
contain an as yet undetected polynucleotide, then,
presumably, prion replication would involve a virus-
like strategy. The putative scrapie-specific nucleic acid
would act as a template for its own synthesis using
cellular polymerases. By an as yet undefined mecha-
nism, the putative scrapie-specific nucleic acid would
stimulate the conversion of PrP¢ to PrP%. Although
this putative scrapie-specific nucleic acid would pro-
vide a plausible explanation for prion diversity, it
would require that this nucleotide sequence be able
to discriminate between SHaPrP and MoPrP in
Tg(SHaPrP) mice. In addition, the putative scrapie-
specific nucleic acid would have to be ubiquitous to
explain how sporadic CJD occurs with an incidence of
1 in 10° (Brown 1980; Masters et al. 1978) all over the
planet whereas virtually all people carrying PrP gene
mutations develop prion disease.

A more likely scenario is that prions do not contain
a scrapie-specific nucleic acid; rather, they are com-
posed entirely of PrP% molecules. If this is the case,
then the species barrier for prion transmission, the
results with Tg(SHaPrP) mice, and infectious prions
in the brains of patients with inherited prion diseases
can be more readily explained. If prions are composed
entirely of PrP%, then replication must involve the
interaction of nascent PrP¢ or a precursor with PrP%
(Prusiner 1991; Prusiner et al. 1990). Although there
are no physical data demonstrating the existence of
PrP%/PrP% heterodimers, it is difficult to explain the
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results obtained with Tg(SHaPrP) mice in studies of
prion replication. Moreover, other studies have shown
that patients homologous for the Met-Val polymor-
phism at codon 129 are predisposed to sporadic GJD
whereas those with heterozygous alleles at codon 129
are relatively protected (Palmer et al. 1991). These
findings have been interpreted as being consistent
with the hypothesis that prion replication is most
efficient when the primary structures of PrP¢ and
PrP% are the same. As noted above, although the
PrP% model is consistent with all of the experimental
data, it continues to be problematic with respect to
explaining the molecular basis of multiple distinct
scrapie prion isolates or ‘strains’.

The formal possibility remains that prions contain a
second component which is not a nucleic acid. A small
polypeptide, a polysaccharide, a lipid-glycan or a
phospholipid—sterol complex are all possibilities, but
there is no evidence for any of these molecules as prion
components.

Some investigators have suggested that scrapie
agent multiplication proceeds through a crystalization
process involving PrP amyloid formation (Gajdusek
1988, 1990; Gajdusek & Gibbs 1990). Against this
hypothesis is the absence or rarity of amyloid plaques
in many prion diseases, as well as the inability to
identify any amyloid-like polymers in cultured cells
chronically synthesizing prions (McKinley et al.
1991a; Prusiner et al. 1990). Purified infectious prepa-
rations isolated from scrapie-infected hamster brains
exist as amorphous aggregates; only if PrP% is exposed
to detergents and limited proteolysis, does it then
polymerize into prion rods exhibiting the ultrastruc-
tural and tinctorial features of amyloid (McKinley et
al. 1991a). Furthermore, dispersion of prion rods into
detergent-lipid—protein complexes results in a 10- to
100-fold increase in scrapie titre and no rods could be
identified in these fractions by electron microscopy
(Gabizon et al. 1987).

11. CONCLUDING REMARKS

The study of prions has taken several unexpected
directions over the past few years. The discovery that
prion diseases in humans are uniquely both genetic
and infectious has greatly strengthened and extended
the prion concept. To date, 12 different mutations in
the human PrP gene all resulting in non-conservative
substitutions have been found to be either linked
genetically to or segregate with the inherited prion
diseases. Yet the transmissible prion particle is com-
posed largely, if not entirely, of an abnormal isoform
of the prion protein designated PrP5 (Prusiner 1991).
These findings suggest that prion diseases should be
considered pseudoinfections because the particles
transmiting disease appear to be devoid of a foreign
nucleic acid and thus differ from all known micro-
organisms as well as viruses and viroids. Because much
information, especially about scrapie of rodents, has
been derived using experimental protocols adapted
from virology, we continue to use terms such as
infection, incubation period, transmissibility and end-
point titration in studies of prion diseases.
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It seems likely that the principles learned from the
study of prion diseases will be applicable to eclucidat-
ing the causes of more common neurodegenerative
diseases. Such disorders include Alzheimer’s disease,
amyotrophic lateral sclerosis and Parkinson’s disease.
Because people at risk for inherited prion diseases can
now be identified decades before neurologic dysfunc-
tion is evident, the development of an effective
therapy is imperative. If PrP® can be diminished in
humans without deleterious effects, as is the case for
Prn-p”° mice (Biieler et al. 1992), then reducing the
level of PrP mRNA with antisence oligonucleotides
might prove an effective therapeutic approach delay-
ing the onset of cNs symptoms and signs.

The study of prion biology and diseases seems to be
a new and emerging area of biomedical investigation.
Although prion biology has its roots in virology,
neurology and neuropathology, its relations to the
disciplines of molecular and cell biology as well as
protein chemistry have become evident only recently.
It seems likely that learning how prions multiply and
cause disease may open up new vistas into many areas
of disease-related research.
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igure 2. Histoblots of Syrian hamster brain immunostained
r PrP® or PrP*>. Coronal sections through the hippocam-
us-thalamus (a,c,e) and the septum-caudate (b,d,/f). Brain
= >:ctiﬂn5 of a Syrian hamster (¢,d) clinically ill after inocula-

5=on with Sc237 prions and (e, f) an uninfected, control

»
= Gaimal. Immunostaining for (¢,d) PrP> and (e, f) PrP®. Ac,
ucleus accumbens; Am, amygdala; Cd, caudate nucleus;
b, diagonal band of Broca; H, habenula; Hp, hippocam-
sus; Hy, hypothalmus; IC, internal capsule; NC, neocortex;
h, thalamus; Pir, piriform cortex; Pt, putamen; S, septal
ucler. Reproduced from T'araboulos et al. (Proc. nain. Acad.

. U.S.A., 1992a).

SO

PHILOSOPHICAL
TRANSACTIONS TH



http://rstb.royalsocietypublishing.org/

